1 5 Condor—A Distributed Job Scheduler

Todd Tannenbaum, Derek Wright, Karen Miller, and Miron Livny

Condor is a sophisticated and unique distributed job scheduler developed by the
Condor research project at the University of Wisconsin-Madison Department of
Computer Sciences.

A public domain version of the Condor software and complete documentation is
freely available from the Condor project’s website at http://www.cs.wisc.edu/
condor. Organizations may optionally purchase a commercial version of Condor
with an accompanying support contract; for additional information see URL http:
//www.condorcomputing. com.

This chapter introduces all aspects of Condor, from its ability to satisfy the needs
and desires of both submitters and resource owners, to the management of Condor
on clusters. Following an overview of Condor and Condor’s ClassAd mechanism is a
description of Condor from the user’s perspective. The architecture of the software
is presented along with overviews of installation and management. The chapter
ends with configuration scenarios specific to clusters.

15.1 Introduction to Condor

Condor is a specialized workload management system for compute-intensive jobs.
Like other full-featured batch systems, Condor provides a job queueing mechanism,
scheduling policy, priority scheme, resource monitoring, and resource management.
Users submit their jobs to Condor, and Condor places them into a queue, chooses
when and where to run them based upon a policy, monitors their progress, and
ultimately informs the user upon completion.

While providing functionality similar to that of a more traditional batch queueing
system, Condor’s novel architecture allows it to succeed in areas where traditional
scheduling systems fail. Condor can be used to manage a cluster of dedicated
Beowulf nodes. In addition, several unique mechanisms enable Condor to effectively
harness wasted CPU power from otherwise idle desktop workstations. Condor can
be used to seemlessly combine all of your organization’s computational power into
one resource.

Condor is the product of the Condor Research Project at the University of
Wisconsin-Madison (UW-Madison), and was first installed as a production sys-
tem in the UW-Madison Department of Computer Sciences nearly 10 years ago.
This Condor installation has since served as a major source of computing cycles to
UW-Madison faculty and students. Today, just in our department alone, Condor
manages more than 1000 workstations including the department’s 500 CPU Linux

2 Chapter 15

Beowulf cluster. On a typical day, Condor delivers more than 650 CPU days to
UW researchers. Additional Condor installations have been established over the
years across our campus and the world. Hundreds of organizations in industry,
government, and academia have used Condor to establish compute environments
ranging in size from a handful to hundreds of workstations. We hope that Condor
will help revolutionize your compute environment as well.

15.1.1 Features of Condor

Condor’s features are extensive. It provides great flexibility for both the user sub-
mitting jobs and for the owner of a machine which provides CPU time towards
running jobs. This list summarizes some of Condor’s capabilities.

Distributed Submission. There is no single, centralized submission ma-
chine. Instead, Condor allows jobs to be submitted from many machines,
and each machine contains its own job queue. Users may submit to a cluster
from their own desktop machine.

Job Priorities. Users can assign priorities to their submitted jobs in order to
control the execution order of the jobs. A “nice-user” mechanism requests
the use of only those machines which would have otherwise been idle.

User Priorities. Administrators may assign priorities to users using a flexible
mechanism which enables a policy of fair share, strict ordering, fractional
ordering, or a combination of policies.

Job Dependence. Some sets of jobs require an ordering due to dependencies
between jobs. Only start job X after jobs Y and Z successfully complete is
an example of a dependency. Enforcing dependencies is easily handled.

Support for Multiple Job Models. Condor handles both serial jobs and
parallel jobs incorporating PVM, dynamic PVM, and MPI.

ClassAds. The ClassAd mechanism in Condor provides an extremely flex-
ible and expressive framework for matching resource requests (jobs) with
resource offers (machines). Jobs can easily state both job requirements and
job preferences. Likewise, machines can specify requirements and preferences
about the jobs they are willing to run. These requirements and preferences
can be described in powerful expressions, resulting in Condor’s adaptation
to nearly any desired policy.

Job Checkpoint and Migration. With certain types of jobs, Condor can
transparently take a checkpoint and subsequently resume the application. A
checkpoint is a snapshot of a job’s complete state. Given a checkpoint, the
job can later continue its execution from where it left off at the time of the

Condor—A Distributed Job Scheduler 3

checkpoint. A checkpoint also enables the transparent migration of a job
from one machine to another machine.

Periodic Checkpoint. Condor can be configured to periodically produce a
checkpoint for a job. This provides a form of fault tolerance and safeguards
the accumulated computation time of a job. It reduces the loss in the event
of a system failure such as the machine being shut down or hardware failure.

Job Suspend and Resume. Based upon policy rules, Condor can ask the
operating system to suspend and later resume a job.

Remote System Calls. Despite running jobs on remote machines, Condor
can often preserve the local execution environment via remote system calls.
Users do not need to make data files available or even obtain a login account
on remote workstations before Condor executes their programs there. The
program behaves under Condor as if it were running as the user that submit-
ted the job on the workstation where it was originally submitted, regardless
of where it really executes.

Pools of Machines can Work Together. Flocking allows jobs to be sched-
uled across multiple Condor pools. It can be done across pools of machines
owned by different organizations that impose their own policies.

Authentication and Authorization. Administrators have fine-grained con-
trol of access permissions, and Condor can perform strong network authen-
tication using a variety of mechanisms including Kerberos and X.509 public
key certificates.

Heterogeneous Platforms. In addition to Linux, Condor has been ported
to most of the other primary flavors of Unix as well as Windows NT. A single
pool can contain multiple platforms. Jobs to be executed under one platform
may be submitted from a different platform. As an example, an executable
that runs under Windows 2000 may be submitted from a machine running
Linux.

Grid Computing. Condor incorporates many of the emerging Grid-based
computing methodologies and protocols. It can interact with resources man-
aged by Globus.

15.1.2 TUnderstanding Condor ClassAds

The ClassAd is a flexible representation of the characteristics and constraints of
both machines and jobs in the Condor system. Matchmaking is the mechanism
by which Condor matches an idle job with an available machine. Understanding
this unique framework is the key to harness the full flexibility of the Condor system.

4 Chapter 15

ClassAds are employed by users to specify which machines should service their jobs.
Administrators use them to customize scheduling policy.

Conceptualizing Condor ClassAds: Just like the Newspaper Condor’s
ClassAds are analogous to the classified advertising section of the newspaper.
Sellers advertise specifics about what they have to sell, hoping to attract a buyer.
Buyers may advertise specifics about what they wish to purchase. Both buyers and
sellers list constraints that must be satisfied. For instance, a buyer has a maximum
spending limit, and a seller requires a minimum purchase price. Furthermore, both
want to rank requests to their own advantage. Certainly a seller would rank one
offer of $50 dollars higher than a different offer of $25. In Condor, users submitting
jobs can be thought of as buyers of compute resources and machine owners are
sellers.

All machines in a Condor pool advertise their attributes, such as available RAM
memory, CPU type and speed, virtual memory size, current load average, current
time and date, along with other static and dynamic properties. This machine
ClassAd also advertises under what conditions it is willing to run a Condor job and
what type of job it would prefer. These policy attributes can reflect the individual
terms and preferences by which the different owners have graciously allowed their
machines to participate in the Condor pool.

Upon submitting a job to Condor, a job ClassAd is created. This ClassAd
includes attributes about the job, such as the amount of memory the job uses,
the name of the program to run, the user who submitted the job, the time it was
submitted, and much more. The job can also specify requirements and preferences
(or rank) for the machine that will run the job. For instance, perhaps you are
looking for the fastest floating point performance available. You want Condor to
rank available machines based upon floating point performance. Perhaps you care
only that the machine has a minimum of 256 Mbytes of RAM. Or, perhaps you will
take any machine you can get! These job attributes and requirements are bundled
up into a job ClassAd.

Condor plays the role of matchmaker by continuously reading all the job ClassAds
and all the machine ClassAds, matching and ranking job ads with machine ads.
Condor ensures that the requirements in both ClassAds are satisfied.

Structure of a ClassAd A ClassAd is a set of uniquely named expressions.
Each named expression is called an attribute. Each attribute has an attribute name
and an attribute value. The attribute value can be a simple integer, string, or
floating point value, such as

Condor—A Distributed Job Scheduler 5

Memory = 512
OpSys = "LINUX"
NetworkLatency = 7.5

An attribute value can also consist of a logical expression which will evaluate to
TRUE, FALSE, or UNDEFINED. The syntax and operators allowed in these ex-
pressions are similar to those in C or Java, that is == for equals, != for not-equals,
&& for logical and, || for logical or, and so on. Furthermore, ClassAd expressions
can incorporate attribute names to refer to other attribute values. For instance,
consider the following small sample ClassAd:

MemoryInMegs = 512

MemoryInBytes = MemoryInMegs * 1024 * 1024

Cpus = 4

BigMachine = (MemoryInMegs > 256) && (Cpus >= 4)
VeryBigMachine = (MemoryInMegs > 512) && (Cpus >= 8)
FastMachine = BigMachine && SpeedRating

In this example, BigMachine evaluates to TRUE and VeryBigMachine evaluates to
FALSE. But, because attribute SpeedRating is not specified, FastMachine would
evaluate to UNDEFINED.

Condor provides meta-operators that allow you to explicitly compare against the
UNDEFINED value by testing both the type and value of the operands. If both
the types and values match, the two operands are considered identical. =7= is used
for meta-equals, or is-identical-to, and =!= is used for meta-not-equals, or is-not-
identical-to. These operators always return TRUE or FALSE, and therefore enable
Condor administrators to specify explicit policies given incomplete information.

A complete description of ClassAd semantics and syntax is documented in the
Condor Manual.

Matching ClassAds ClassAds can be matched with one another. This is the
fundamental mechanism by which Condor matches jobs with machines. Figure 15.1
displays a ClassAd from Condor representing a machine and another representing
a queued job. Each ClassAd contains a MyType attribute, describing what type of
resource the ad represents, and a TargetType attribute. The TargetType specifies
the type of resource desired in a match. Job ads want to be matched with machine
ads and vice-versa.

Each ClassAd engaged in matchmaking specifies a Requirements and a Rank
attribute. In order for two ClassAds to match, the Requirements expression in
both ads must evaluate to TRUE. An important component of matchmaking is the

Job ClassAd

Chapter 15

Magchine ClassAd

MyType = “Job”

TargetType = “Machine”

Requirements = ((Arch==“INTEL” && Op-
Sys==“LINUX”) && Disk > DiskUsage)
Rank = (Memory * 10000) + KFlops

Args = “ini ./ies.ini”
ClusterIld = 680
Cmd = “/home/tannenba/bin/sim-exe”

Department = “CompSci”
DiskUsage = 465

StdErr = “sim.err”

ExitStatus = 0

FileReadBytes = 0.000000
FileWriteBytes = 0.000000
ImageSize = 465

StdIn = “/dev/null”

Iwd = “/home/tannenba/sim-m/run_55”
JobPrio = 0

JobStartDate = 971403010
JobStatus = 2

StdOut = “sim.out”

Owner = “tannenba”

Procld = 64

QDate = 971377131
RemoteSysCpu = 0.000000
RemoteUserCpu = 0.000000
RemoteWallClockTime = 2401399.000000
TransferFiles = “NEVER”
WantCheckpoint = FALSE
WantRemoteSyscalls = FALSE

Figure 15.1
Examples of ClassAds in Condor.

MyType = “Machine”

TargetType = “Job”

Requirements = Start

Rank = TARGET.Department==MY .Department
Activity = “Idle”

Arch = “INTEL”

ClockDay = 0

ClockMin = 614

CondorLoadAvg = 0.000000

Cpus =1

CurrentRank = 0.000000
Department = “CompSci”

Disk = 3076076
EnteredCurrentActivity = 990371564
EnteredCurrentState = 990330615
FileSystemDomain = “cs.wisc.edu”
IsInstructional = FALSE
Keyboardldle = 15

KFlops = 145811

LoadAvg = 0.220000

Machine = “nostos.cs.wisc.edu”
Memory = 511
Mips = 732

OpSys = “LINUX”

Start = (LoadAvg <= 0.300000) && (Key-
boardIdle > (15 * 60))

State = “Unclaimed”

Subnet = “128.105.165”
TotalVirtualMemory = 787144

Requirements and Rank expression can refer not only to attributes in their own ad,

but also to attributes in the candidate matching ad. For instance, the Requirements
expression for the job ad specified in Figure 15.1 refers to Arch, OpSys, and Disk
which are all attributes found in the machine ad.

What if Condor finds more than one machine ClassAd which satisfies the Requirements

constraint? That is where the Rank expression comes into play. The Rank expres-

sion specifies the desirability of the match (where higher numbers mean better
matches). For example, the job ad in Figure 15.1 specifies:

Requirements
Rank

((Arch=="INTEL" && OpSys=="LINUX") && Disk > DiskUsage)
(Memory * 100000) + KFlops

In this case, the job requires a computer running the LINUX operating system
and more local disk space than it will use. Among all such computers, the user
prefers those with large physical memories and fast floating-point CPUs (KFlops is

Condor—A Distributed Job Scheduler 7

a metric of floating-point performance). Since the Rank is a user specified metric,
any expression may be used to specify the perceived desirability of the match.
Condor’s matchmaking algorithms deliver the best resource (as defined by the Rank
expression) while satisfying other criteria.

15.2 Using Condor

The road to using Condor effectively is a short one. The basics are quickly and
easily learned.

15.2.1 Roadmap to Using Condor

Here are the steps involved to run jobs using Condor:

Prepare the job to run unattended. An application run under Condor must
be able to execute as a batch job. Condor runs the program unattended and in the
background. A program that runs in the background will not be able to perform
interactive input and output. Condor can redirect console output (stdout and
stderr) and keyboard input (stdin) to and from files. Create any needed files that
contain the proper keystrokes needed for program input. Make certain the program
will run correctly with the files.

Select the Condor Universe. Condor has five runtime environments from which
to choose. Each runtime environment is called a Universe. Usually the Universe
you choose is determined by the type of application you are asking Condor to run.
There are six job Universes in total: two for serial jobs (Standard and Vanilla),
one for parallel PVM jobs (PVM), one for parallel MPI jobs (MPI), one for Grid
applications (GLOBUS), and one for meta-schedulers (Scheduler). Section 15.2.4
provides more information on each of these Universes.

Create a Submit Description file. The details of a job submission are defined
in a submit description file. This file contains information about the job such as
what executable to run, which Universe to use, the files to use for stdin, stdout,
and stderr, requirements and preferences about the machine which should run the
program, and where to send e-mail when the job completes. You can also tell
Condor how many times to run a program; it is simple to run the same program
multiple times with different data sets.

Submit the Job. Submit the program to Condor with the condor_submit com-
mand.

8 Chapter 15

Once submitted, Condor handles all aspects of running the job. You can subse-
quently monitor the job’s progress with the condor_q and condor_status com-
mands. You may modify the order in which Condor will run your jobs with
condor_prio. If desired, Condor can also record what is being done with your
job at every stage in its lifecycle through the use of a log file specified during
submission.

When the program completes, Condor notifies the owner (either by e-mail, the
user-specified log file, or both) the exit status, along with various statistics, includ-
ing time used and I/O performed. You can remove a job from the queue at any
time with condor_rm.

15.2.2 Submitting a Job

A job is submitted for execution to Condor using the condor_submit command.
condor_submit takes as an argument the name of the submit description file.
This file contains commands and keywords to direct the queuing of jobs. In the
submit description file, the user defines everything Condor needs to execute the job.
Items such as the name of the executable to run, the initial working directory, and
command-line arguments to the program all go into the submit description file.
condor_submit creates a job ClassAd based upon the information, and Condor
schedules the job.

The contents of a submit description file can save time for Condor users. It is
easy to submit multiple runs of a program to Condor. To run the same program
500 times on 500 different input data sets, the data files are arranged such that
each run reads its own input, and each run writes its own output. Every individual
run may have its own initial working directory, stdin, stdout, stderr, command-line
arguments, and shell environment.

Example submit description files illustrate the flexibility of using Condor. As-
sume the jobs submitted are serial jobs intended for a cluster that has a shared
filesystem across all nodes. Therefore, all jobs use the Vanilla Universe, the sim-
plest one for running serial jobs. The other Condor Universes are explored later.

Example 1: Very simple submit description file FExample 1 is the simplest
submit description file possible. It queues up one copy of the program ‘foo’ for
execution by Condor. A log file called ‘foo.log’ is generated by Condor. The log
file contains events pertaining to the job while it runs inside of Condor. When the
job finishes, its exit conditions are noted in the log file. It is recommended that you
always have a log file so you know what happened to your jobs. The queue statement
in the submit description file tells Condor to use all the information specified so far

Condor—A Distributed Job Scheduler 9

to create a job ClassAd and place the job into the queue. Lines that begin with a
pound character ("#’) are comments and are ignored by condor_submit.

Example 1 : Simple submit file
universe = vanilla

executable = foo

log = foo.log

queue

Example 2: More sophisticated submit description file Example 2 queues
two copies of the program ‘mathematica’. The first copy runs in directory ‘run_
1’, and the second runs in directory ‘run_2’. For both queued copies, ‘stdin’ will
be ‘test.data’, ‘stdout’ will be ‘loop.out’, and ‘stderr’ will be ‘loop.error’.
There will be two sets of files written, as the files are each written to their own
directories. This is a convenient way to organize data for a large group of Condor
jobs.

Example 2: demonstrate use of multiple

directories for data organization.
universe = vanilla

executable = mathematica

Give some command line args, remap stdio
arguments = -solver matrix

input = test.data

output = loop.out

error = loop.error

log = loop.log

initialdir = run_1
queue
initialdir = run_2
queue

Example 3: Submit description file specifying 150 runs The submit de-
scription file for Example 3 queues 150 runs of program ‘foo’. This job requires
Condor to run the program on machines which have greater than 128 megabytes of
physical memory, and it further requires that the job not be scheduled to run on
a specific node. Of the machines which meet the requirements, the job prefers to
run on the fastest floating-point nodes currently available to accept the job. It also
advises Condor that the job will use up to 180 megabytes of memory when running.
Each of the 150 runs of the program is given its own process number, starting with
process number 0. Several built-in macros can be used in a submit description
file; one of them is the $(Process) macro which Condor expands to be the process
number in the job cluster. This causes files ‘stdin’, ‘stdout’, and ‘stderr’ to be
‘in.0’, ‘out.0’, and ‘err.0’ for the first run of the program, ‘in.1’, ‘out.1’, and
‘err.1’ for the second run of the program, and so forth. A single log file will list
events for all 150 jobs in this job cluster.

10 Chapter 15

Example 3: Submit lots of runs and use the

pre-defined $(Process) macro.

universe = vanilla

executable = foo

requirements = Memory > 128 && Machine != "server-node.cluster.edu"
rank = KFlops

image_size = 180

Error = err.$(Process)
Input in.$(Process)
Output out.$(Process)
Log = foo.log

queue 150

Note that the requirements and rank entries in the submit description file will
become the requirements and rank attributes of the subsequently created ClassAd
for this job. These are arbitrary expressions that can reference any attributes of
either the machine or the job; see Section 15.1.2 for more on requirements and rank
expressions in ClassAds.

15.2.3 Overview of User Commands

Once you have jobs submitted to Condor, you can manage them and monitor
their progress. Figure 15.1 shows several commands available to the Condor user
to view the job queue, check the status of nodes in the pool, and several other
activities. Most of these commands have many command-line options; please see the
Command Reference chapter of the Condor Manual for complete documentation.
To provide an introduction from a user perspective, we give a quick tour showing

several of these commands in action.

When jobs are submitted, Condor will attempt to find resources to service the
jobs. A list of all users with jobs submitted may be obtained through condor_status
with the -submitters option. An example of this would yield output similar to:

% condor_status -submitters

Name Machine Running IdleJobs HeldJobs
ballard@cs.wisc.edu bluebird.c 0 11 0
nice-user.condor@cs. cardinal.c 6 504 0
wright@cs.wisc.edu finch.cs.w 1 1 0
jbasney@cs.wisc.edu perdita.cs 0 0 5

RunningJobs IdleJobs HeldJobs

Condor—A Distributed Job Scheduler

11

Command

Description

condor_checkpoint
condor_compile

condor_glidein
condor_history
condor_hold
condor_prio
condor_gedit
condor_q
condor_release
condor_reschedule
condor_rm
condor_run
condor_status
condor_submit_dag

condor_submit
condor_userlog

Checkpoint jobs running on the specified hosts
Create a relinked executable for submission to the

Standard Universe
Add a Globus resource to a Condor pool

View log of Condor jobs completed to date

Put jobs in the queue in hold state

Change priority of jobs in the queue

Modify attributes of a previously submitted job
Display information about jobs in the queue

Release held jobs in the queue

Update scheduling information to the central manager
Remove jobs from the queue

Submit a shell command-line as a Condor job
Display status of the Condor pool

Manage and queue jobs within a specified DAG for

inter-job dependencies.
Queue jobs for execution

Display and summarize job statistics from job log files

Table 15.1
List of User Commands.

ballard@cs.wisc.edu
jbasney@cs.wisc.edu
nice-user.condor@cs.
wright@cs.wisc.edu

Total

Checking on the progress of jobs

0 11
0 0
6 504
1 1
7 516

of all jobs in the queue. An example of the output from condor_q is

% condor_q

—-- Schedd: uug.cs.wisc.edu :

ID OWNER
55674.0 jane
555675.0 jane
83193.0 jane
83196.0 jane
83212.0 jane

<128.115.121.12:33102>

o O o O

5

The condor_q command displays the status

SUBMITTED RUN_TIME ST PRI SIZE CMD

6/23 11:33 4+03:35:28 R 0 25.7 seycplex seymour.d
6/23 11:44 0+23:24:40 R 0 26.8 seycplexpseudo sey
3/28 15:11 48+15:50:55 R 0 17.5 cplexmip testl.mp
3/29 08:32 48+03:16:44 R 0 83.1 cplexmip test3.mps
4/13 16:31 41+18:44:40 R O 39.7 cplexmip test2.mps

12 Chapter 15

5 jobs; 0 idle, 5 running, O held

This output contains many columns of information about the queued jobs. The
ST column (for status) shows the status of current jobs in the queue. An R in
the status column means the the job is currently running. An I stands for idle.
The status H is the hold state. In the hold state, the job will not be scheduled
to run until it is released (via the condor release command). The RUN_TIME
time reported for a job is the time that job has been allocated to a machine as

DAYS+HOURS+MINS+SECS.

Another useful method of tracking the progress of jobs is through the user log. If
you have specified a log command in your submit file, the progress of the job may be
followed by viewing the log file. Various events such as execution commencement,
checkpoint, eviction and termination are logged in the file along with the time at
which the event occurred. Here is a sample snippet from a user log file

000 (8135.000.000) 05/25 19:10:03 Job submitted from host: <128.105.146.14:1816>
001 (8135.000.000) 05/25 19:12:17 Job executing on host: <128.105.165.131:1026>

005 (8135.000.000) 05/25 19:13:06 Job terminated.
(1) Normal termination (return value 0)

Usr 0 00:00:37, Sys 0 00:00:00 - Run Remote Usage
Usr 0 00:00:00, Sys 0 00:00:05 - Run Local Usage
Usr 0 00:00:37, Sys 0 00:00:00 - Total Remote Usage
Usr 0 00:00:00, Sys 0 00:00:05 - Total Local Usage
9624 - Run Bytes Sent By Job

7146159 - Run Bytes Received By Job

9624 - Total Bytes Sent By Job

7146159 - Total Bytes Received By Job

The condor_jobmonitor tool parses the events in a user log file and can use the
information to graphically display the progress of your jobs. Figure 15.2 contains

a screenshot of condor_jobmonitor in action.

You can locate all the machines that are running your job through the condor_status
command. For example, to find all the machines that are running jobs submitted
by “breach@cs.wisc.edu,” type:

% condor_status —-constraint ’RemoteUser == "breach@cs.wisc.edu"’
Name Arch OpSys State Activity LoadAv Mem ActvtyTime

alfred.cs. INTEL LINUX Claimed Busy 0.980 64 0+07:10:02

Condor—A Distributed Job Scheduler

13

Condor Job Monitor

File Options Yiew Zoom Help

81320

13z

1332

81333

81334

81335

s1a28

sraar

e1aze

s1238

81340

1341

s134.2

1342

1244

1345

81348

1347

s1a48

s1348

Job 8134.0

Executing on host: 128.105.146.151:3115> at 0525 12:04:57L

S
e s

5125 08725 0572
02:34 120248 12:0808 1208131,

osi25
203:32

5125

o
1203

0525
AT 420401 1204:46 120431 12

) = 5 e 72 5
0445 120500 120544 120520 20544 120558 1A208:1% 120828

Al

Figure 15.2

Condor JobMonitor Tool.

biron.cs.w
cambridge.
falcons.cs
happy.cs.w
istat03.st
istat04.st
istat09.st

INTEL
INTEL
INTEL
INTEL
INTEL
INTEL
INTEL

LINUX
LINUX
LINUX
LINUX
LINUX
LINUX
LINUX

Claimed
Claimed
Claimed
Claimed
Claimed
Claimed
Claimed

Busy
Busy
Busy
Busy
Busy
Busy
Busy

OO O OO0 =

.000
.988
.996
.988
.883
.988
.301

To find all the machines that are running any job at all, type:

% condor_status -run

Name

Arch

OpSys

LoadAv RemoteUser

128 0+01:10:
64 0+00:15:
32 0+02:05:
128 0+03:05:
64 0+06:45:
64 0+00:10:
64 0+03:45:
ClientMachine

00
00
03
00
01
00
00

14 Chapter 15

adriana.cs INTEL LINUX
alfred.cs. INTEL LINUX
amul.cs.wi INTEL LINUX
anfrom.cs. INTEL LINUX
anthrax.cs INTEL LINUX
astro.cs.w INTEL LINUX
aura.cs.wi INTEL LINUX
balder.cs. INTEL LINUX
bamba.cs.w INTEL LINUX
bardolph.c INTEL LINUX

.980 hepcon@cs.wisc.edu chevre.cs.wisc.
.980 breach@cs.wisc.edu neufchatel.cs.w
.000 nice-—user.condor@cs. chevre.cs.wisc.
.023 ashoks@jules.ncsa.ui jules.ncsa.uiuc
.285 hepcon@cs.wisc.edu chevre.cs.wisc.
.000 nice-user.condor@cs. chevre.cs.wisc.
.996 nice—user.condor@cs. chevre.cs.wisc.
.000 nice-user.condor@cs. chevre.cs.wisc.
.574 dmarino@cs.wisc.edu riola.cs.wisc.e
.000 nice-user.condor@cs. chevre.cs.wisc.

H H R, O OKRPOO

Removing a job from the queue A job can be removed from the queue at any
time using the condor_rm command. If the job that is being removed is currently
running, the job is killed without a checkpoint, and its queue entry is removed. The
following example shows the queue of jobs before and after a job is removed.

% condor_q

-- Submitter: froth.cs.wisc.edu : <128.105.73.44:33847> : froth.cs.wisc.edu

ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
125.0 jbasney 4/10 15:35 0+400:00:00 I -10 1.2 hello.remote
132.0 raman 4/11 16:57 0+00:00:00 R O 1.4 hello

2 jobs; 1 idle, 1 running, O held

% condor_rm 132.0
Job 132.0 removed.

% condor_q

-- Submitter: froth.cs.wisc.edu : <128.105.73.44:33847> : froth.cs.wisc.edu
1D OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
125.0 jbasney 4/10 15:35 0+00:00:00 I -10 1.2 hello.remote

1 jobs; 1 idle, O running, O held

Changing the priority of jobs In addition to the priorities assigned to each
user, Condor provides users with the capability of assigning priorities to any sub-
mitted job. These job priorities are local to each queue and range from -20 to +20,
with higher values meaning better priority.

The default priority of a job is 0. Job priorities can be modified using the
condor_prio command. For example, to change the priority of a job to -15,

% condor_q raman

Condor—A Distributed Job Scheduler 15

-- Submitter: froth.cs.wisc.edu : <128.105.73.44:33847> : froth.cs.wisc.edu
1D OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
126.0 raman 4/11 15:06 0+00:00:00 I O 0.3 hello

1 jobs; 1 idle, O running, O held
% condor_prio -p -15 126.0
% condor_q raman

-- Submitter: froth.cs.wisc.edu : <128.105.73.44:33847> : froth.cs.wisc.edu
D OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
126.0 raman 4/11 15:06 0+00:00:00 I -15 0.3 hello

1 jobs; 1 idle, O running, O held

It is important to note that these job priorities are completely different from the
user priorities assigned by Condor. Job priorities only control which one of your
jobs should run next; it has no bearing on if your jobs will run before another user’s
jobs.

Why does the job not run? Users sometimes find that their jobs do not run.
There are several reasons why a specific job does not run. These reasons include
failed job or machine constraints, bias due to preferences, insufficient priority, and
the preemption throttle that is implemented by the condor negotiator to prevent
thrashing. Many of these reasons can be diagnosed by using the -analyze option of
condor_q. For example, the following job submitted by user jbasney had not run
for several days.

% condor_q
—— Submitter: froth.cs.wisc.edu : <128.105.73.44:33847> : froth.cs.wisc.edu
in) OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
125.0 jbasney 4/10 15:35 0+00:00:00 I -10 1.2 hello.remote
1 jobs; 1 idle, O running, O held
Running condor_g’s analyzer provided the following information:
% condor_q 125.0 -analyze
-— Submitter: froth.cs.wisc.edu : <128.105.73.44:33847> : froth.cs.wisc.edu

125.000: Run analysis summary. O0f 323 resource offers,

16 Chapter 15

323 do not satisfy the request’s constraints

resource offer constraints are not satisfied by this request
are serving equal or higher priority customers

are serving more preferred customers

cannot preempt because preemption has been held

are available to service your request

O O O OO

WARNING: Be advised:
No resources matched request’s constraints
Check the Requirements expression below:

Requirements = Arch == "INTEL" && OpSys == "IRIX6" &&
Disk >= ExecutableSize && VirtualMemory >= ImageSize

The Requirements expression for this job specifies a platform that does not exist.
Therefore, the expression always evaluates to FALSE.

While the analyzer can diagnose most common problems, there are some situa-
tions that it cannot reliably detect due to the instantaneous and local nature of the
information it uses to detect the problem. The analyzer may report that resources
are available to service the request, but the job still does not run. In most of these
situations, the delay is transient, and the job will run during the next negotiation
cycle.

If the problem persists and the analyzer is unable to detect the situation, the job
may begin to run but immediately terminates and return to the idle state. Viewing
the job’s error and log files (specified in the submit command file) and Condor’s
SHADOW_LOG file may assist in tracking down the problem. If the cause is still
unclear, please contact your system administrator.

Job Completion When a Condor job completes (either through normal means
or abnormal means), Condor will remove it from the job queue (therefore, it will
no longer appear in the output of condor_q) and insert it into the job history file.
You can examine the job history file with the condor history command. If you
specified a log file in your submit description file, then the job exit status will be
recorded there as well.

By default, Condor will send you an email message when your job completes.
You can modify this behavior with the condor_submit “notification” command.
The message will include the exit status of your job or notification that your job
terminated abnormally.

Condor—A Distributed Job Scheduler 17

15.2.4 Submitting different types of jobs: Alternative Universes

A Universe in Condor defines an execution environment. Condor supports the
following Universes on Linux:

e Vanilla
MPI
PVM
Globus
Scheduler
e Standard

The Universe attribute is specified in the submit description file. If the Universe
is not specified, then it will default to Standard.

Vanilla Universe The Vanilla Universe is used to run serial (non-parallel) jobs.
The examples provided in the previous section use the Vanilla Universe. Most
Condor users prefer to use the Standard Universe to submit serial jobs because of
several helpful features of the Standard Universe. However, the Standard Universe
has several restrictions on the types of serial jobs supported. The Vanilla Universe,
on the other hand, has no such restrictions. Any program that runs outside of
Condor will run in the Vanilla Universe. Binary executables as well as scriptsare
welcome in the Vanilla Universe.

A typical Vanilla Universe job relies on a shared filesystem between the submit
machine and all the nodes in order to allow jobs to access their data. However, if
a shared filesystem is not available, Condor can transfer the files needed by the job
to and from the execute machine. See Section 15.2.5 for more details on this.

MPI Universe The MPI Universe allows parallel programs written with MPI
to be managed by Condor. To submit an MPI program to Condor, specify the
number of nodes to be used in the parallel job. Use the machine_count attribute
in the submit description file, as in the example:

Submit file for an MPI job which needs 8 large memory nodes
universe = mpi

executable = my-parallel-job

requirements = Memory >= 512

machine_count = 8

queue

Further options in the submit description file allow a variety of parameters, such
as the job requirements or the executable to use across the different nodes.

18 Chapter 15

At the publication time of this book, Condor expects your MPI job to be linked
with the MPICH implementation of MPI configured with the ch_p4 device (see
Chapter ??, specifically Section ??). However, support for different devices and
MPI implementations are expected, so check the documentation included with your
specific version of Condor for additional information on how your job should be
linked with MPI for Condor.

If your Condor pool consists of both dedicated compute machines (that is, Be-
owulf cluster nodes) and opportunistic machines (that is, desktop workstations),
realize that by default Condor will schedule MPI jobs to run on the dedicated
resources only.

PVM Universe The PVM Universe allows master-worker style parallel programs
written for the Parallel Virtual Machine interface (see Chapter ??) to be used with
Condor. A unique aspect of the PVM Universe is that PVM jobs submitted to
Condor can harness both dedicated and non-dedicated (opportunistic) workstations
throughout the pool by dynamically adding machines to and removing machines
from the parallel virtual machine as machines become available.

In the PVM Universe, Condor acts as the resource manager for the PVM daemon.
Whenever a PVM program asks for nodes via a pvm_addhosts() call, the request
is forwarded to Condor. Condor finds a machine in the Condor pool using ClassAd
matching mechanisms, and adds it to the virtual machine. If a machine needs
to leave the pool, the PVM program is notified by normal PVM mechanisms, for
example, the pvm notify() call.

There are several different parallel programming paradigms. One of the more
common is the ”master-worker” or ”pool of tasks” arrangement. In a master-
worker program model, one node acts as the controlling master for the parallel
application and sends pieces work out to worker nodes. The worker node does
some computation and sends the result back to the master node. The master has
a pool of work that needs to be done, and it assigns the next piece of work out to
the next worker that becomes available.

The PVM Universe is designed to run PVM applications which follow the master-
worker paradigm. Condor runs the master application on the machine where the
job was submitted and will not preempt the master application. Workers are pulled
in from the Condor pool as they become available.

Writing a PVM program that deals with Condor’s opportunistic environment
can be a tricky task. For that reason, the MW framework has been created. MW
is a tool for making master-worker style applications in Condor’s PVM Universe.

Condor—A Distributed Job Scheduler 19

For more information, see the MW Homepage online at http://www.cs.wisc.edu/

condor/mw.

Submitting to the PVM Universe is similar to submitting to the MPI Universe,
except the syntax for machine_count is different to reflect the dynamic nature of
the PVM Universe. Here is a simple sample submit description file:

Require Condor to give us one node before starting
the job, but we’ll use up to 75 nodes if they are
available.

universe = pvm

executable = master.exe

machine_count = 1..75

queue

By using machine_count = <min>..<max>, the submit description file tells Condor
that before the PVM master is started, there should be at least <min> number of
machines given to the job. It also asks Condor to give it as many as <max> machines.

More detailed information on the PVM Universe is available in the Condor Man-
ual as well as on the Condor-PVM Homepage at URL http://www.cs.wisc.edu/
condor/pvm.

Globus Universe The Globus Universe in Condor is intended to provide the
standard Condor interface to users who wish to submit jobs to machines being
managed by Globus (http://www.globus.org).

Scheduler Universe The Scheduler Universe is used to submit a job which will
immediately run on the submit machine, as opposed to a remote execution machine.
The purpose is to provide a facility for job meta-schedulers that desire to manage
the submission and removal of jobs into a Condor queue. Condor includes one
such meta-scheduler which utilizes the Scheduler Universe: the DAGMan sched-
uler, which can be used to specify complex interdependencies between jobs. See
Section 15.2.6 for more on DAGMan.

Standard Universe The Standard Universe requires minimal extra effort on
the part of the user, but provides a serial job with the following highly desireable
services:

Transparent process checkpoint and restart
Transparent process migration

Remote System Calls

Configurable file I/O buffering

On-the-fly file compression/inflation

20 Chapter 15

Process Checkpointing in the Standard Universe A checkpoint of an exe-
cuting program is a snapshot of the program’s current state. It provides a a way
for the program to be continued from that state at a later time. Using checkpoints
gives Condor the freedom to reconsider scheduling decisions through preemptive-
resume scheduling. If the scheduler decides to rescind a machine that is running
a Condor job (for example, when the owner of that machine returns and reclaims
it, or when a higher priority user desires the same machine), the scheduler can
take a checkpoint of the job and preempt the job without losing the work the job
has already accomplished. The job can then be resumed later when the Condor
scheduler allocates it a new machine. Additionally, periodic checkpoints provide
fault tolerance. Normally, when performing long-running computations, if a ma-
chine crashes, or must be rebooted for an administrative task, all the work that
has been done is lost. The job must be restarted from the beginning, which can
mean days, weeks, or even months of wasted computation time. With checkpoints,
Condor ensures that positive progress is always made on jobs, and that only the
computation done since the last checkpoint is lost. Condor can be take checkponts
periodically, and after an interruption in service, the program can continue from
the most recent snapshot.

To enable taking checkpoints, no changes are required to a program’s source
code. The program must be relinked with the Condor system call library (see
below). Taking the checkpoint of a process is implemented in the Condor system
call library as a signal handler. When Condor sends a checkpoint signal to a process
linked with this library, the provided signal handler writes the state of the process
out to a file or a network socket. This state includes the contents of the process’s
stack and data segments, all CPU state (including register values), the state of
all open files, and any signal handlers and pending signals. When a jobs is to
be continued using a checkpoint, Condor reads this state from the file or network
socket, restoring the stack, shared library and data segments, file state, signal
handlers, and pending signals. The checkpoint signal handler then restores the
CPU state and returns to the user code, which continues from where it left off when
the checkpoint signal arrived. Condor jobs submitted to the Standard Universe
will automatically perform a checkpoint when preempted from a machine. When
a suitable replacement execution machine is found (of the same architecture and
operating system), the process is restored on this new machine from the checkpoint,
and computation is resumed from where it left off.

By default, a checkpoint is written to a file on the local disk of the submit
machine. A Condor checkpoint server is also available to serve as a repository for
checkpoints.

Condor—A Distributed Job Scheduler 21

Remote System Calls in the Standard Universe One hurdle to overcome
when placing an job on a remote execution workstation is data access. In order to
utilize the remote resources, the job must be able to read from and write to files on
its submit machine. A requirement that the remote execution machine be able to
access these files via NFS, AFS, or any other network file system may significantly
limit the number of eligible workstations and therefore hinder the ability of a HTC
environment to achieve high throughput. Therefore, in order to maximize through-
put, Condor strives to be able to run any application on any remote workstation
of a given platform without relying upon a common administrative setup. The en-
abling technology that permits this is Condor’s Remote System Calls mechanism.
This mechanism provides the benefit that Condor does not require a user to posses
a login account on the execute workstation.

When a Unix process needs to access a file, it calls a file I/ O system function such
as open(), read(), or write(). These functions are typically handled by the standard
C library, which consists primarily of stubs that generate a corresponding system
call to the local kernel. Condor users link their applications with an enhanced stan-
dard C library via the condor_compile command. This library does not duplicate
any code in the standard C library; instead, it augments certain system call stubs
(such as the ones which handle file I/O) into remote system call stubs. The remote
system call stubs package the system call number and arguments into a message
which is sent over the network to a condor_shadow process that runs on the submit
machine. Whenever Condor starts a Standard Universe job, it also starts a corre-
sponding shadow process on the initiating host where the user originally submitted
the job (see Figure 15.3). This shadow process acts as an agent for the remotely
executing program in performing system calls. The shadow then executes the sys-
tem call on behalf of the remotely running job in the normal way. The shadow
packages up the results of the system call in a message and sends it back to the
remote system call stub in the Condor library on the remote machine. The remote
system call stub returns its result to the calling procedure, which is unaware that
the call was done remotely rather than locally. In this fashion, calls in the user’s
program to open(), read(), write(), close(), and all other file I/O calls transparently
take place on the machine which submitted the job instead of the remote execution
machine.

Relinking and Submitting for the Standard Universe To convert a program
into a Standard Universe job, use the condor_compile command to re-link with
the Condor libraries. Place condor_compile in front of your usual link command.
You do not need to modify the program’s source code, but you do need access

22

Chapter 15

Regular System Calls vs. Remote System Calls

How Regular
System Calls Work

Executing Machine

How Remote System Calls Work

Submitting Machine

Executing Machine

Condor Job
User code Remote system 4 | User code
,,,,, call code \ \| L]
C Library C Library Condor
Library
Regular system Regular system

call stubs

Operating System
Kernel

call stubs

Operating System

Kernel

~(Remote system
call stubs

Operating System

Kernel

Figure 15.3

Remote System Calls in the Standard Universe.

to its un-linked object files. A commercial program that is packaged as a single
executable file cannot be converted into a Standard Universe job.
For example, if you normally link your job by executing:

% cc main.o tools.o -o program
You can re-link your job for Condor with:
% condor_compile cc main.o tools.o -o program

After you have re-linked your job, you can submit it. A submit description file for
the Standard Universe is similar to one for the Vanilla Universe. However, several
additional submit directives are available to perform activities such as on-the-fly
compression of data files. Here is an example:

Submit 100 runs of my-program to the Standard Universe

universe = standard

executable = my-program.exe

Each run should take place in a seperate subdirectory: runO, runi,
initialdir = run$(Process)

Ask the Condor remote syscall layer to automatically compress

on-the-fly any writes done by my-program.exe to file data.output
compress_files = data.output

queue 100

Many system
administra-
tor’s prefer
Condor’s
checkpoint
implementa-
tion at the
user level
instead of
kernel-level
alternatives,
for fear that
pervasive
kernel
changes could
compromise
the stability
of the
operating
system.

Condor—A Distributed Job Scheduler 23

Standard Universe Limitations Condor performs its process checkpoint and
migration routines strictly in user mode — there are no kernel drivers with Condor.
Because Condor is not operating at the kernel level, there are limitations on what
process state it is able to checkpoint. As a result, the following restrictions are

imposed upon Standard Universe jobs:

1. Multi-process jobs are not allowed. This includes system calls such as fork(),
exec(), and system().

2. Interprocess communication is not allowed. This includes pipes, semaphores,
and shared memory.

3. Network communication must be brief. A job may make network connections
using system calls such as socket(), but a network connection left open for long
periods will delay checkpoints and migration.

4. Multiple kernel-level threads are not allowed. However, multiple user-level
threads (green threads) are allowed.

5. All files should be accessed read-only or write-only. A file which is both read
and written to could cause trouble if a job must be rolled back to an old checkpoint
image.

6. On Linux, your job must be statically linked. Dynamic linking is allowed in
the Standard Universe on some other platforms supported by Condor, and perhaps
this restriction on Linux will be removed in a future Condor release.

15.2.5 Giving your job access to its data files

Once your job starts on a machine in your pool, how does it access its data files?
Condor provides alternatives.

If the job is a Standard Universe job, then Condor solves the problem of data
access automatically using the Remote System call mechanism described above.
Whenever the job tries to open, read, or write to a file, the I/O will actually take
place on the submit machine, whether or not a shared file system is in place.

Condor can utilize a shared file system, if one is available and permanently
mounted across the machines in the pool. This is usually the case in a Beowulf clus-
ter. But what if your Condor pool includes non-dedicated (desktop) machines as
well? You could specify a Requirements expression in your submit description file
to require that jobs only run on machines which actually do have access to a com-
mon, shared file system. Or, you could request in the submit description file that
Condor transfer your job’s data files using the Condor File Transfer mechanism.

24 Chapter 15

When Condor finds a machine willing to execute your job, it can create a tempo-
rary subdirectory for your job on the execute machine. The Condor File Transfer
mechanism will then send via TCP the job executable(s) and input files from the
submitting machine into this temporary directory on the execute machine. After
the input files have been transferred, the execute machine will start running the
job with the temporary directory as the job’s current working directory. When the
job completes or is kicked off, Condor File Transfer will automatically send back to
the submit machine any output files created or modified by the job. After the files
have been sent back successfully, the temporary working directory on the execute
machine is deleted.

Condor’s File Transfer mechanism has several features to ensure data integrity in
a non-dedicated environment. For instance, transfers of multiple files are performed
atomically.

Condor File Transfer behavior is specified at job submission time using the submit
description file and condor_submit. Along with all the other job submit descrip-
tion parameters, you can use the following File Transfer commands in the submit
description file:

transfer_input_files = < filel, file2, file... > Use this parameter to list all the
files which should be transferred into the working directory for the job before the
job is started.

transfer_output_files = < filel, file2, file... > Use this parameter to explic-
itly list which output files to transfer back from the temporary working directory
on the execute machine to the submit machine. Most of the time, however, there is
no need to use this parameter. If transfer output_files is not specified, Condor
will automatically transfer back all files in the job’s temporary working directory
which have been modified or created by the job.

transfer_files = <ONEXIT — ALWAYS — NEVER> Setting transfer_files
equal to ONEXIT will cause Condor to transfer the job’s output files back to the
submitting machine only when the job completes (exits). Specifying ALWAYS tells
Condor to transfer back the output files when the job completes or when Condor
kicks off the job (preempts) from a machine prior to job completion. The ALWAYS
option is specifically intended for fault-tolerant jobs which periodocially write out
their state to disk and can restart where the left off. Any output files transferred
back to the submit machine when Condor preempts a job will automatically be
sent back out again as input files when the job restarts.

Condor—A Distributed Job Scheduler 25

15.2.6 The DAGMan scheduler

The DAGMan scheduler within Condor allows the specification of dependencies
between a set of programs. A directed acyclic graph (DAG) can be used to represent
a set of programs where the input, output, or execution of one or more programs
is dependent on one or more other programs. The programs are nodes (vertices)
in the graph, and the edges (arcs) identify the dependencies. Each program within
the DAG becomes a job submitted to Condor. The DAGMan scheduler enforces
the depencies of the DAG.

An input file to DAGMan identifies the nodes of the graph, as well as how to
submit each job (node) to Condor. It also specifies the graph’s dependencies and
describes any extra processing that comprises a node of the graph, but must take
place just before or just after the job is run.

A simple diamond-shaped DAG with four nodes is given in Figure 77.

A simple input file to DAGMan for this diamond-shaped DAG may be

file name: diamond.dag
Job A A.condor

Job B B.condor

Job C C.condor

Job D D.condor

PARENT A CHILD B C
PARENT B C CHILD D

The four nodes are named A, B, C, and D. Lines beginning with the keyword Job
identify each node by giving it a name, and they also specify a file to be used as
a submit description file for submission as a Condor job. Lines with the keyword
PARENT identify the dependencies of the graph. Just like regular Condor submit
description files, lines with a leading pound character ("#’) are comments.

The DAGMan scheduler uses the graph to order the submission of jobs to Con-
dor. The submission of a child node will not take place until the parent node has
successfully completed. There is no ordering of siblings imposed by the graph, and
therefore DAGMan does not impose an ordering when submitting the jobs to Con-
dor. For the diamond-shaped example, nodes B and C will be submitted to Condor
in parallel.

Each job within the example graph uses a different submit description file. An
example submit description file for job A may be

file name: A.condor
executable = nodeA.exe

26 Chapter 15

Figure 15.4
A directed acyclic graph with four nodes.

output = A.out

error = A.err

log = diamond.log
universe = vanilla
queue

An important restriction for submit description files of a DAG is that each node of
the graph must use the same log file. DAGMan uses the log file in the enforcement
of the graph’s dependencies.
Submission of the graph for execution under Condor uses the Condor tool condor_submit_dag.
For the diamond-shaped example, submission would use the command:

condor_submit_dag diamond.dag

Condor—A Distributed Job Scheduler 27

15.3 Condor Architecture

A Condor pool is comprised of a single machine which serves as the central manager,
and an arbitrary number of other machines that have joined the pool. Conceptually,
the pool is a collection of resources (machines) and resource requests (jobs). The
role of Condor is to match waiting requests with available resources. Every part of
Condor sends periodic updates to the central manager, the centralized repository
of information about the state of the pool. The central manager periodically as-
sesses the current state of the pool and tries to match pending requests with the
appropriate resources.

15.3.1 The Condor Daemons

To help understand the architecture of Condor, the following list describes all the
daemons (background server processes) in Condor and what role they play in the
system:

condor master This daemon’s role is to simplify system administration. It is re-
sponsible for keeping the rest of the Condor daemons running on each machine in
a pool. The master spawns the other daemons and periodically checks the times-
tamps on the binaries of the daemons it is managing. If it finds new binaries,
the master will restart the affected daemons. This allows Condor to be upgraded
easily. In addition, if any other Condor daemon on the machine exits abnormally,
the condor master will send e-mail to the system administrator with informa-
tion about the problem and then automatically restart the affected daemon. The
condor master also supports various administrative commands to start, stop or
reconfigure daemons remotely. The condor master runs on every machine in your
Condor pool.

condor_startd This daemon represents a machine to the Condor pool. It ad-
vertises a machine ClassAd which contains attributes about the machine’s capa-
bilities and policies. Running the startd enables a machine to execute jobs. The
condor_startd is responsible for enforcing the policy under which remote jobs will
be started, suspended, resumed, vacated, or killed. When the startd is ready to
execute a Condor job, it spawns the condor _starter, described below.

condor_starter This program is the entity that spawns the remote Condor job on
a given machine. It sets up the execution environment and monitors the job once
it is running. The starter detects job completion, sends back status information to
the submitting machine, and exits.

28 Chapter 15

condor_schedd This daemon represents jobs to the Condor pool. Any machine
that allows users to submit jobs needs to have a condor_schedd running. Users
submit jobs to the schedd, where they are stored in the job queue. The various
tools to view and manipulate the job queue (such as condor_submit, condor_q, or
condor_rm) connect to the schedd to do their work.

condor_shadow This program runs on the machine where a job was submitted
whenever that job is executing. The shadow serves requests for files to transfer,
logs the job’s progress, and reports statistics when the job completes. Jobs that are
linked for Condor’s Standard Universe, which perform remote system calls, do so
via the condor_shadow. Any system call performed on the remote execute machine
is sent over the network to the condor_shadow. The shadow performs the system
call (such as file I/O) on the submit machine and the result is sent back over the
network to the remote job.

condor_collector This daemon is responsible for collecting all the information
about the status of a Condor pool. All other daemons periodically send ClassAd
updates to the collector. These ClassAds contain all the information about the state
of the daemons, the resources they represent or resource requests in the pool (such
as jobs that have been submitted to a given schedd). The condor_collector can
be thought of as a dynamic database of ClassAds. The condor_status command
can be used to query the collector for specific information about various parts of
Condor. The Condor daemons also query the collector for important information,
such as what address to use for sending commands to a remote machine. The
condor_collector runs on the machine designated as the central manager.

condor negotiator This daemon is responsible for all the matchmaking within
the Condor system. The negotiator is also responsible for enforcing user priorities
in the system.

15.3.2 The Condor Daemons in Action

Within a given Condor installation, one machine will serve as the pool’s central
manager. In addition to the condor master daemon which runs on every ma-
chine in a Condor pool, the central manager runs the condor_collector and the
condor_negotiator daemons. Any machine in the installation that should be capa-
ble of running jobs should run the condor_startd, and any machine which should
maintain a job queue and therefore allow users on that machine to submit jobs
should run a condor_schedd.

Condor—A Distributed Job Scheduler 29

Condor allows any machine to simultaneously execute jobs and serve as a sub-
mission point by running both a condor_startd and a condor_schedd. Figure 15.5
displays a Condor pool where every machine in the pool can both submit and run
jobs, including the central manager.

\ Central Manager |

Machine f

Schedd >

Figure 15.5
Daemon layout of an idle Condor pool.

The interface for adding a job to the Condor System is condor_submit, which
reads a job description file, creates a job ClassAd, and gives that ClassAd to the
condor_schedd managing the local job queue. This triggers a negotation cycle.
During a negotiation cycle, the condor negotiator queries the condor_collector
to discover all machines that are willing to perform work and all users with idle
jobs. The condor negotiator communicates in user priority order with each
condor_schedd that has idle jobs in its queue, and performs matchmaking to match
jobs with machines such that both job and machine ClassAd requirements are sat-
isfied and preferences (rank) are honored.

Once the condor negotiator makes a match, the condor_schedd claims the cor-
responding machine and is allowed to make subsequent scheduling decisions about
the order in which jobs run. This hierarchical, distributed scheduling architecture
enhances Condor’s scalability and flexibility.

When the condor_schedd starts a job, it spawns a condor_shadow process on
the submit machine and the condor_startd spawns a condor_starter process on
the corresponding execute machine (see Figure 15.6). The shadow transfers the

30 Chapter 15

job ClassAd and any data files required to the starter, which spawns the user’s
application.

If the job is a Standard Universe job, the shadow will begin to service remote
system calls originating from the user job, allowing the job to transparently access
data files on the submitting host.

When the job completes or is aborted, the condor_starter removes every process
spawned by the user job, and frees any temporary scratch disk space used by the
job. This ensures that the execute machine is left in a clean state, and resources
(such as processes or disk space) are not being leaked.

\ Central Manager |

Machine 2 Machine N

Startd

[

[]

[]
ee’

[
i

— = Communication pathway
----* =Process created by fork()

Figure 15.6
Daemon layout when a job submitted from Machine 2 is running.

15.4 Installing Condor under Linux

The first step towards the installation of Condor is to download the software from
the Condor website at http://www.cs.wisc.edu/condor/downloads. There is no
cost to download or use Condor.

On the website you will find complete documentation and release notes for the
different, versions and platforms we support. Please take care to download the ap-

Condor—A Distributed Job Scheduler 31

propriate version of Condor for your platform (the operating system and processor
architecture).

Before you begin the installation, there are several issues you need to decide and
actions to perform.

Creation of user condor. For both security and performance reasons, the Con-
dor daemons should execute with root privileges. However, to avoid running as root
except when absolutely necessary, the Condor daemons will run with the privileges
of user condor on your system. In addition, the condor user simplifies installation,
since files owned by the user condor will be created, and the home directory of
the user condor can be used to specify file locations. For Linux clusters, we highly
recommend that you create the user condor on all machines before installation
begins.

Location. Administration of your pool is eased when the release directory, which
includes all the binaries, libraries, and configuration files used by Condor, is placed
on a shared file server. Note that one set of binaries is needed for each platform in
your pool.

Administrator. Condor needs an e-mail address for an administrator. Should
Condor need assistance, this is where e-mail will be sent.

Central manager. The central manager of a Condor pool does matchmaking and
collects information for the pool. Choose a central manager that has a good network
connection and is likely to be online all the time (or at least rebooted quickly in
the event of a failure).

Once you have decided the answers to these questions (and set up the condor user)
you are ready to begin installation. The tool called condor_install is executed to
begin the installation. The configuration tool will ask you a short series of questions,
mostly related to the issues addressed above. Answer the questions appropriately
for your site, and Condor will be installed.

On a large Linux cluster, you can speed up the installation process by running
condor_install once on your fileserver node, and configure your entire pool at
the same time. If you use this configuration option, you will only need to run the
condor_init script (which requires no input) on each of your compute nodes.

The default Condor installation will configure your pool to assume non-dedicated
resources. Section 15.5 will discuss how to configure and customize your pool for a
dedicated cluster.

32 Chapter 15

However, after installation, there are a few security configuration settings you will
want to customize right away. Condor implements security at the host (or machine)
level. A set of configuration defaults set by the installation deal with access to the
Condor pool by host. Given the distributed nature of the daemons that implement
Condor, access to these daemons is naturally host-based. Each daemon can be
given the ability to allow or deny service (by host) within its configuration. Within
the access levels available, Read, Write, Administrator, and Config are important
to set correctly for each pool of machines.

Read Allows a machine to obtain information from Condor. Examples of infor-
mation that may be read are the status of the pool and the contents of the job
queue.

Write Allows a machine to provide information to Condor, such as submit a job
or join the pool.

Administrator Allows a user on the machine to effect privileged operations such
as changing a user’s priority level, or starting and stopping the Condor system from
running.

Config Allows a user on the machine to change Condor’s configuration settings
remotely using the condor_config val tool’s -set and -rset options. This has very
serious security implications, so we recommend you do not enable Config access to
any hosts.

The defaults during installation give all machines read and write access. The
central manager is also given administrator access.

You will probably want to change these defaults for your site. Please read the
Condor Administrator’s Manual for details on network authorization in Condor,
and how to customize it for your wishes.

15.5 Configuring Condor

This section describes how to configure and customize Condor for your site. It
discusses the configuration files used by Condor, how to configure the policy for
starting and stopping jobs in your pool, and provides recommended settings for
using Condor on a cluster.

There are a number of configuration files that facilitate different levels of control
over how Condor is configured on each machine in a pool. The top-level or global

Condor—A Distributed Job Scheduler 33

configuration file is shared by all machines in the pool. For ease of administration,
this file should be located on a shared file system. In addition, there may be multiple
local configuration files for each machine, allowing the local settings to override the
global settings. This allows each machine to potentially have different daemons
running, different policies for when to start and stop Condor jobs, and so on.

All of Condor’s configuration files should be owned and only writable by root.
It is very important to maintain strict control over these files, since they contain
security sensitive settings.

15.5.1 Location of Condor’s Configuration Files

Condor has a default set of locations it uses to try to find its top-level configuration
file. The locations are checked in the following order:

1. The file specified in the CONDOR_CONFIG environment variable.
2. ‘/etc/condor/condor_config’, if it exists.

3. If user condor exists on your system, the ‘condor_config’ file in this user’s
home directory.

If a Condor daemon or tool cannot find its global configuration file when it starts
up, it will print out an error message and immediately exit. However, once the
global configuration file has been read by Condor, any other local configuration
files can be specified with the LOCAL_CONFIG_FILE macro.

This macro can contain a single entry if you only want two levels of configuration
(global and local). If you need a more complex division of configuration values (for
example, if you have machines of different platforms in the same pool and desire
separate files for platform-specific settings), LOCAL_CONFIG FILE can contain a list
of files.

Condor provides other macros to help you easily define the location of the local
configuration files for each machine in your pool. Most of these are special macros
with evaluate to different values depending on which host is reading the global
configuration file.

e HOSTNAME : The hostname of the local host.

e FULL_HOSTNAME : The fully-qualified hostname of the local host.

e TILDE : The home directory of the condor user on the local host.

e (PSYS : The operating system of the local host, for example: “LINUX”, “WINNT4”
(for Windows NT), or “WINNT5” (for Windows 2000). This is primarily useful in
heterogeneous clusters with multiple platforms.

34 Chapter 15

e RELEASE DIR : The directory where Condor is installed on each host. This
macro is defined in the global configuration file, and is set by Condor’s installation
program.

By default, the local configuration file is defined as:
LOCAL_CONFIG_FILE = $(TILDE)/condor_config.local

15.5.2 Recommended Configuration File Layout for a Cluster

The ease of administration is an important consideration in a cluster, particularly
if you have a large number of nodes. To make Condor easy to configure, we highly
recommend that you install all of your Condor configuration files, even the per-
node local configuration files, on a shared filesystem. That way, you can easily
make changes in one place.

You should use a subdirectory in your release directory for holding all of the
local configuration files. By default, Condor’s release directory contains an ‘etc’
directory for this purpose.

You should create separate files for each node in your cluster, using the hostname
as the first half of the filename, and “.local” as the end. For example, if your cluster
nodes are named “n01”, “n02” and so on, the files should be called ‘n01.local’,
‘n02.local’, etc. These files should all be placed in your ‘etc’directory, described
above.

In your global configuration file, you would use the following setting to describe
the location of your local configuration files:

LOCAL_CONFIG_FILE = $(RELEASE_DIR)/etc/$ (HOSTNAME) .local

The central manager of your pool needs special settings in its local configuration
file. These attributes are set automatically by the Condor installation program.
The rest of the local configuration files can be left empty at first.

Having your configuration files laid out in this way will help you more easily
customize Condor’s behavior on your cluster. We will discuss other possible config
scenarios at the end of this chapter.

NOTE: We recommend that you store all of your Condor configuration files
under a version control system, such as CVS. While this is not required, it will help
you keep track of the changes you make to your configuration, who made them,
when they occurred, and why. In general, it is a good idea to store configuration
files under a version control system, since none of the above concerns are specific
to Condor.

Condor—A Distributed Job Scheduler 35

15.5.3 Customizing Condor’s Policy Expressions

Certain configuration expressions are used to control Condor’s policy for execut-
ing, suspending, and evicting jobs. Their interaction can be somewhat complex.
Defining an inappropriate policy impacts the throughput of your cluster and the
happiness of its users. If you are interested in creating a specialized policy for your
pool, we recommend that you read the Condor Administrator’s Manual. Only a
basic introduction follows.

All policy expressions are ClassAd expressions and are defined in Condor’s con-
figuration files. Policies are usually pool-wide and are therefore defined in the
global configuration file. However, if individual nodes in your pool require their
own policy, the appropriate expressions can be placed in local configuration files.

The policy expressions are treated by the condor_startd as part of its machine
ClassAd (along with all the attributes you can view with condor_status -long).
They are always evaluated against a job ClassAd, either by the condor negotiator
when trying to find a match, or by the condor_startd when it is deciding what
to do with the job that is currently running. Therefore, all policy expressions can
reference attributes of a job, such as the memory usage or owner, in addition to
attributes of the machine, such as keyboard idle time or CPU load.

Most policy expressions are ClassAd boolean expressions, so they evaluate to
either TRUE, FALSE, or UNDEFINED. UNDEFINED occurs when an expression
references a ClassAd attribute that is not found in either the machine’s ClassAd or
the ClassAd of the job under consideration. For some expressions, this is treated
as a fatal error, so you should be sure to use the ClassAd meta-operators, described
in section 15.1.2 when referring to attributes which might not be present in all
ClassAds.

An explanation of policy expressions requires the understanding of the different
stages that a job can go through from initially executing until the job completes or
is evicted from the machine. Each policy expression is then described in terms of
the step in the progression that it controls.

The Lifespan of a Job Executing in Condor When a job is submitted to
Condor, the condor_negotiator performs matchmaking to find a suitable resource
to use for the computation. This process involves satisfying both the job and the
machine’s requirements for each other. The machine can define the exact conditions
under which it is willing to be considered available for running jobs. The job can
define exactly what kind of machine it is willing to use.

36 Chapter 15

Once a job has been matched with a given machine, there are four states the job
can be in: running, suspended, graceful shutdown, and quick shutdown. As soon as
the match is made, the job sets up its execution environment and begins running.

While it is executing, a job can be suspended (for example, due to other activity
on the machine where it is running). Once it has been suspended, the job can either
resume execution, or can move on to preemption or eviction.

All Condor jobs have two methods for preemption: graceful and quick. Standard
universe jobs are given a chance to produce a checkpoint with graceful preemption.
For the other universes, graceful implies that the program is told to get off the
system, but it is given time to clean up after itself. On all flavors of Unix, a
SIGTERM is sent during graceful shutdown by default, although users can override
this default when they submit their job. A quick shutdown involves rapidly killing
all processes associated with a job, without giving them any time to execute their
own clean up procedures. The Condor system performs checks to ensure that
processes are not left behind once a job is evicted from a given node.

Condor Policy Expressions This section describes the various expressions
used to control the policy for starting, suspending, resuming, and preempting jobs.

START When the condor_startd is willing to start executing a job.

RANK How much the condor_startd prefers each type of job running on it. The
RANK expression is a floating point value, instead of a boolean value. The condor_startd
will preempt the job it is currently running if there is another job in the system
that yields a higher value for this expression.

WANT_SUSPEND Controls if the condor_startd should even consider suspending this
job or not. In effect, it determines which expression, SUSPEND or PREEMPT , should
be evaluated while the job is running. WANT_SUSPEND does not control when the
job is actually suspended; use the SUSPEND expression.

SUSPEND When the condor_startd should suspend the currently running job. If
WANT_SUSPEND evaluates to TRUE, SUSPEND is periodically evaluated whenever
a job is executing on a machine. If SUSPEND becomes TRUE, the job will be
suspended.

CONTINUE If and when the condor_startd should resume a suspended job. The
CONTINUE expression is only evaluated while a job is suspended. If it evaluates
to TRUE, the job will be resumed and the condor_startd will go back to the
Claimed/Busy state.

Condor—A Distributed Job Scheduler 37

PREEMPT When the condor_startd should preempt the currently running job.
This expression is evaluated whenever a job has been suspended. If WANT_SUSPEND
evaluates to FALSE, PREEMPT is checked while the job is executing.

WANT_VACATE If Condor is preempting a job (because the PREEMPT expression
evaluates to TRUE), WANT_VACATE determines if the job should be evicted gracefully
or quickly. If WANT_VACATE is FALSE, the condor_startd will immediately kill
the job and all of its child processes whenever it must evict the application. If
WANT_VACATE is TRUE, the condor_startd performs a graceful shutdown, instead.

KILL When the condor_startd should give up on a graceful preemption and move
directly to the quick shutdown.

PREEMPTION REQUIREMENTS This expression is used by the condor negotiator
when it is performing match-making, not by the condor_startd. While trying
to schedule jobs on resources in your pool, the condor negotiator considers the
priorities of the various users in the system (see section 15.6.3 for more details).
If a user with a better priority has jobs waiting in the queue and no resources are
currently idle, the matchmaker will consider preempting another user’s jobs and
giving those resources to the user with the better priority. This process is known
as priority preemption. The PREEMPTION REQUIREMENTS expression must evaluate
to TRUE for such a preemption to take place.

PREEMPTION RANK This floating point value is evaluated by the condor negotiator.

If the matchmaker decides it must preempt a job due to user priorities, the PREEMPTION_
RANK macro determines which resource to preempt. Among the set of all resources
that make the PREEMPTION REQUIREMENTS expression evaluate to TRUE, the one
with the highest value for PREEMPTION RANK is evicted.

15.5.4 Customizing Condor’s Other Configuration Settings

In addition to the policy expressions, there are other settings you will need to
modify to customize Condor for your cluster.

DAEMON_LIST The comma-separated list of daemons that should be spawned by
the condor master. As described in section 15.3.1 discussing the architecture of
Condor, each host in your pool can play different roles depending upon which
daemons are started on it. You define these roles using the DAEMON_LIST in the
appropriate configuration files to enable or disable the various Condor daemons on
each host.

38 Chapter 15

DedicatedScheduler The name of the dedicated scheduler for your cluster. This
setting must have the form:

DedicatedScheduler = "DedicatedScheduler@full.host.name.here"

15.6 Administration Tools

Condor has a rich set of tools for the administrator. Figure 15.2 gives an overview
of the Condor commands typically used solely by the system administrator. Of
course, many of the “user-level” Condor tools summarized in Figure 15.1 can be
very helpful for cluster administration as well. For instance, the condor_status
tool can easily display the status for all nodes in the cluster, including dynamic
information such as current load average and free virtual memory.

Command

Description

condor_checkpoint
condor_config val
condor master_off
condor_off
condor_on
condor_reconfig
condor_restart
condor_stats
condor_userprio

condor_vacate

Checkpoint jobs running on the specified hosts
Query or set a given Condor configuration variable
Shut down Condor and the condor master

Shut down Condor daemons

Start up Condor daemons

Reconfigure Condor daemons

Restart the condor master

Display historical information about the Condor pool
Display and manage user priorities

Vacate jobs that are running on the specified hosts

Table 15.2

Commands reserved for the administrator.

15.6.1 Remote Configuration and Control

All machines in a Condor pool can be remotely managed from a centralized loca-
tion. Condor can be enabled, disabled, or restarted remotely using the condor_on,
condor _off, and condor restart commands respectively. Additionally, any as-
pect of Condor’s configuration file on a node can be queried or changed remotely
via the condor_config_val command. Of course, not anyone is allowed to change
your Condor configuration remotely. Doing so requires proper authorization, which
is set up at installation time (see Section 15.4).

Many aspects of Condor’s configuration, including its scheduling policy, can be
changed on-the-fly without requiring the pool to be shutdown and restarted. This

Condor—A Distributed Job Scheduler 39

is accomplished using the condor_reconfig command which asks the Condor dae-
mons on a specified host to re-read the Condor configuration files and take appro-
priate action— on the fly if possible.

15.6.2 Accounting and Logging

Condor keeps many statistics about what is happening in the pool. Each daemon
can be asked to keep a detailed log of its activities; Condor will automatically rotate
these log files when they reach a maximum size as specified by the administrator.

In addition to the condor history command, which allows users to view job
ClassAds for jobs which have previously completed, the condor_stats tool can be
used to query for historical usage statistics from a pool-wide accounting database.
This database contains information about how many jobs were being serviced for
each user at regular intervals, as well as how many machines were busy. For in-
stance, condor_stats could be asked to display the total number of jobs running
at 5 minute intervals for a specified user between January 15th and January 30th.

The condor_view tool takes the raw information obtainable with condor_stats
and converts it into HTML, complete with interactive charts. Figure 15.7 shows a
sample display of the output from condor viewin a web browser. Using condor _view,
the site administrator can quickly put detailed, real-time usage statistics about the
Condor pool onto a web site.

15.6.3 User Priorities in Condor

The job queues in Condor are not strictly FIFO (First In, First Out). Instead,
Condor implements priority queueing. Different users will get different sized allo-
cations of machines depending upon their current user priority, regardless of how
many jobs are from a competing user are ”ahead” of them in the queue. Condor can
also be configured to perform priorty preemption if desired. For instance, suppose
user A is using all the nodes in a cluster, when suddenly a user with a superior
priority submits jobs. With priority preemption enabled, Condor will preempt the
jobs of the lower priority user in order to immediately start the jobs submitted by
the higher priority user.

Starvation of the lower priority users is prevented by a fair-share algorithm,
which attempts to give all users the same amount of machine allocation time over
a specified interval. In addition, the priority calculations in Condor are based on
ratios instead of absolutes. For example, if Bill has a priority which is twice as
good as Fred, Condor will not starve user Fred by allocating all machines to Bill.

40 Chapter 15

3 uW-Madison Comp Sci Condor Machine s for May - Microsoft Internet Explorer D E

[Bk & vew Favomes Took teb |]

UW-Madison Comp Sci Condor Pool Machine Statistics for May

Fio Tue Mey 01 00:11:43 CDT 2001 to 200
00 ‘

Taal
de

700
Toidl

00

Tuel Wed2 Thi3 Fi4 Sa5 SimE Mon? Tue8 WedS Thui0 Fill Sa12 Sinid Menld TuelS Wed1s Thi1Z Fil8 Sal13 Sin20 Mon2l Twe22

Congae. Zomin | Zoori0u | A | sbout |
r— pp— : " o . e
Arch Owner Average Condor Average Tdle Average Owner Peak Condor Peak:
Total 146.3 4743 618 393 635
s (21.3%) (69.6%) 9.1%) (57%) (89%)
A o o am on o)
DIELSOLARIES] (193 26%> amﬁ-) (GIIT}/n) (62“26) (s;;a
INIEL/SOLARISZS, (2:)25?/0 (7;68‘3%) (00;%-) (6;“06) (Rgg’n)
ety (212 51%) (7; 15%) (003?/@ (726%) (w1 t‘r]yn)]
SLMEOLARIZS (3202“14) (6294;) 0245/@ (823@ (93;4.)
SUMAWSOLARISZS (192 43%) (,f ;%) (70;/“) (668%) (911ﬂl/=)
RIELAVIETEY (2?33;) (5§2£/u) (23;71:4) (;xiz,) (9‘9552)
| SUN4SOLARIS2S @035@ (358 2%) (5";/“) (888“@ (wz%) =

Figure 15.7
CondorView displaying machine usage.

Instead, Bill will get, on average, twice as many machines as user Fred because
Bill’s priority is twice as good.

The condor_userprio command can be used by the administrator to view or edit
a user’s priority. condor_userprio can also be used to override Condor’s default
fair-share policy and explicitly assign users a better or worse priority in relation to
other users.

15.7 Cluster Setup Scenarios

This section explores different scenarios for how to configure your cluster. Five
scenarios are presented, along with a basic idea of what configuration settings you
will need to modify, or what steps you will need to take for each scenario.

Condor—A Distributed Job Scheduler 41

1. A uniformly owned, dedicated compute cluster, with a single front-end node
for submission, and support for MPI applications.

2. A cluster of multi-processor nodes.

3. A cluster of distributively owned nodes. Each node prefers to run jobs sub-
mitted by its owner.

4. Desktop submission to the cluster.
5. Expanding the cluster to non-dedicated (desktop) computing resources.

Most of these scenarios can be combined. Each scenario builds on the previous
one to add further functionality to the basic cluster configuration.

15.7.1 Basic Configuration: Uniformly Owned Cluster

The most basic scenario involves a cluster where all resources are owned by a single
entity, and all compute nodes enforce the same policy for starting and stopping
jobs. All compute nodes are dedicated, meaning that they will always start an idle
job and they will never preempt or suspend until completion. There is a single
front-end node for submitting jobs, and dedicated MPI jobs are enabled from this
host.

To enable this basic policy, your global configuration file must contain these
settings:

START = True

SUSPEND = False

CONTINUE = False

PREEMPT = False

KILL = False

WANT_SUSPEND = True

WANT_VACATE = True

RANK = Scheduler =7= $(DedicatedScheduler)
DAEMON_LIST = MASTER, STARTD

The final entry listed here specifies that the default role for nodes in your pool
is execute-only.

The DAEMON_LIST on your front-end node must also enable the condor_schedd.
This front-end node’s local configuration file will be:

DAEMON_LIST = MASTER, STARTD, SCHEDD

42 Chapter 15

15.7.2 TUsing Multi-Processor Compute Nodes

If any node in your Condor pool is a symmetric multiprocessor (SMP) machine,
Condor will represent that node as multiple virtual machines (VMs), one for each
CPU. By default, each VM will have a single CPU and an even share of all shared
system resources, such as RAM and swap space. If this behavior satisfies your
needs, you do not need to make any configuration changes for SMP nodes to work
properly with Condor.

Some sites might want different behavior of their SMP nodes. For example,
assume your cluster was composed of dual-processor machines with 1 gigabyte of
RAM, and one of your users was submitting jobs with a memory footprint of 700
megabytes. With the default setting, all VMs in your pool would only have 500
megabytes of RAM, and your user’s jobs would never run.

In this case, you would want to unevenly divide RAM between the two CPUs,
to give half of your VMs 750 megabytes of RAM. The other half of the VMs would
be left with 250 megabytes of RAM.

There is more than one way to divide shared resources on an SMP machine with
Condor, all of which are discussed in detail in the Condor Administrator’s Manual.
The most basic method is described here.

To unevenly divide shared resources on an SMP, you must define different virtual
machine types, and tell the condor_startd how many virtual machines of each type
to advertise. The most simple method to define a virtual machine type is to specify
what fraction of all shared resources each type should receive.

For example, if you wanted to divide a 2-node machine where one CPU received
one quarter of the shared resources, and the other CPU received the other three
quarters, you would use the following settings:

VIRTUAL_MACHINE_TYPE_1 = 1/4
VIRTUAL_MACHINE_TYPE_2 = 3/4
NUM_VIRTUAL_MACHINES_TYPE_ 1 = 1
NUM_VIRTUAL_MACHINES_TYPE_ 2 = 1

If you only want to unevenly divide certain resources, and split the rest evenly,
you can specify separate fractions for each shared resource. This is described in
detail in the Condor Administrator’s Manual.

15.7.3 Scheduling a Distributively Owned Cluster

Many clusters are owned by more than one entity. Two or more smaller groups
might pool their resources to buy a single, larger cluster. In these situations, it is

Condor—A Distributed Job Scheduler 43

important that the group which paid for a portion of the nodes should get priority
to run on those nodes.

Each resource in a Condor pool can define its own Rank expression, which spec-
ifies the kinds of jobs it would prefer to execute.

If a cluster is owned by multiple entities, you can divide the cluster’s nodes up
into groups, based on ownership. Each node would set Rank such that jobs coming
from the group that owned it would have the highest priority.

Assume there is a 60-node compute cluster at a university, shared by three de-
partments: Astronomy, Math, and Physics. Each department contributed the funds
for 20 nodes. Each group of 20 nodes would define its own Rank expression. The
Astronomy department’s settings:

Rank = Department == "Astronomy"

The users from each department would also add a Department attribute to all
of their job ClassAds. The administrators could configure Condor to automatically
add this attribute to all job ads from each site (see the Condor Administrator’s
Manual for details).

If the entire cluster was idle and a Physics user submitted 40 jobs, she would see
all 40 of her jobs start running.

However, if a user in Math submitted 60 jobs and a user in Astronomy submitted
20 jobs, 20 of the Physicist’s jobs’ would be preempted, and each group would get
20 machines out of the cluster.

If all of the Astronomy department’s jobs completed, the Astronomy nodes would
go back to serving Math and Physics jobs. The Astronomy nodes would continue
to run Math or Physics jobs until either some Astronomy jobs were submitted, or
all the jobs in the system completed.

15.7.4 Submitting to the Cluster from Desktop Workstations

Most organizations that install a compute cluster have other workstations at their
site. It is usually desirable to allow these machines to act as front-end nodes for
the cluster, so users can submit their jobs from their own machines and have the
applications execute on the cluster. Even if there is no shared file system between
the cluster and the rest of the computers, Condor’s remote system calls and file
transfer functionality can enable jobs to migrate between the two and still access
their data (see section 15.2.5 on accessing data files for details).

To enable a machine to submit into your cluster, run the Condor installation
program and specify that you want to setup a submit-only node. This will set the
DAEMON_LIST on the new node to be:

44 Chapter 15

DAEMON_LIST = MASTER, SCHEDD

The installation program will also create all the directories and files needed by
Condor.

NOTE: You can only have one node configured as the dedicated scheduler for
your pool. Do not attempt to add a second submit node for MPT jobs.

15.7.5 Expanding the Cluster to Non-Dedicated (Desktop) Computing
Resources

One of the most powerful features in Condor is the ability to combine dedicated and
opportunistic scheduling within a single system. Opportunistic scheduling involves
placing jobs on non-dedicated resources under the assumption that the resources
might not be available for the entire duration of the jobs. Opportunistic scheduling
is used for all jobs in Condor with the exception of dedicated MPI applications.

If your site has a combination of jobs and uses applications other than MPI, you
should strongly consider adding all of your computing resources, even desktop work-
stations, to your Condor pool. With /iflinux checkpointing and process migration,
/fi suspend and resume capabilities, opportunistic scheduling and matchmaking,
Condor can harness the idle CPU cycles of any machine and put them to good use.

To add other computing resources to your pool, run the Condor installation
program and specify that you want to configure a node that can both submit and
execute jobs. The default installation sets up a node with a policy for starting,
suspending, and preempting jobs based on the activity of the machine (for example,
keyboard idle time and CPU load). These nodes will not run dedicated MPI jobs,
but they will run jobs from any other universe, including PVM.

15.8 Conclusion

Condor is a powerful tool for scheduling jobs across platforms, both within and
beyond the boundaries of your Beowulf clusters. Through its unique combination of
both dedicated and opportunistic scheduling, Condor provides a unified framework
for high throughput computing.

This chapter was processed by ITEX on August 23, 2001.

